OCR A Chemistry A-Level Module 2 - Foundations in Chemistry

Amount of a Substance

Notes and Example Calculations
Answers given at the end of the booklet

Atomic Masses

Relative Atomic Mass

The mass of an atom compared to carbon-12 on a scale where carbon is exactly 12.

Relative Isotopic Mass

The mass of an isotope compared to carbon-12 on a scale where carbon is exactly 12 .

Isotope

An atom of an element with different number of neutrons.

Example 1

Calculate the relative atomic mass of Lithium. The isotopes are in the ratio of 7 atoms of Li-6 to every 101 atoms Li-7.

Step 1: Find the total number of atoms.
$\Rightarrow 108$

Step 2: Calculate the total mass of 108 atoms.
Multiply the number of atoms for that particular isotope by the mass number of the isotope. Repeat for the other isotope then add these numbers together.
$\Rightarrow(7 \times 6)+(101 \times 7)=749$
Step 3: Calculate the average mass of 1 atom.
Divide the total mass by total number of atoms.
$\Rightarrow 749 / 108=\underline{6.9}$

However, the relative abundance of the isotopes can also be represented as percentages.

Example 2

A sample of bromine contains 54% bromine- 79 and 46% bromine- 81 . Calculate the relative atomic mass.
(In this example you don't have to find the total number of atoms, the total abundance of both isotopes is 100\%)

Step 1: Calculate the total mass of the bromine atoms.
Multiply the percentage abundance for that particular isotope and the mass number of the isotope together.
Repeat for the other isotope and add these numbers together.
$\Rightarrow(54 \times 79)+(46 \times 81)=7992$
Step 2: Calculate the average mass of 1 atom.
Divide the total mass by the total abundance.
$7992 / 100=\underline{79.92}$

Worked Exam Style Questions

Question 1

Europium, atomic number 63, is used in some television screens to highlight colours. A chemist analysed a sample of europium using mass spectrometry. The results are shown in the table below.

isotope	relative isotopic mass	abundance (\%)
${ }^{151} \mathrm{Eu}$	151.0	47.77
${ }^{153} \mathrm{Eu}$	153.0	52.23

Using the table above, calculate the relative atomic mass of the europium sample. Give your answer to two decimal places. [2 marks]

Step 1: Calculate the total mass of the Europium atoms.
$\Rightarrow(151 \times 47.77)+(153 \times 52.23)=15204.46$
Step 2: Calculate the average mass of one atom.
$\Rightarrow 15204.46 / 100=\underline{152.04}$

Question 2

A sample of rubidium was analysed in a mass spectrometer to produce the mass spectrum below.

(i) Use this mass spectrum to help you complete the table below.

isotope	percentage	number of		
		protons	neutrons	electrons
${ }^{85} \mathrm{Rb}$				
${ }^{87} \mathrm{Rb}$				

(ii) Calculate the relative atomic mass of this rubidium sample. Give your answer to three significant figures.

$$
A_{\mathrm{r}}=
$$

\qquad

In this question the relative abundance of each isotope is represented on a mass spectra, however the method of how to calculate the relative atomic mass is the same.

Step 1: Use the spectra data to find the percentage abundance of each isotope. Read this off the y-axis.
\Rightarrow The abundance $\mathrm{Rb}-85$ is 72% and for $\mathrm{Rb}-87$ is 28%

Step 2: Calculate the total mass for the Rb atoms.
$\Rightarrow(72 \times 85)+(28 \times 87)=8556$

Step 3: Calculate the average mass of 1 mole of atoms.
$\Rightarrow 8556 / 100=\underline{85.56}$

Try these questions ...

1.

A sample of magnesium contained ${ }^{24} \mathrm{Mg}: 78.60 \% ;{ }^{25} \mathrm{Mg}: 10.11 \% ;{ }^{26} \mathrm{Mg}: 11.29 \%$.
Calculate the relative atomic mass of this sample of Mg .
Give your answer to four significant figures.
2.) The mass spectrum of a sample of tellurium is shown in Figure 1.

Figure 1

Relative abundance

) (i) Use Figure 1 to calculate the relative atomic mass of this sample of tellurium. Give your answer to one decimal place.

The Mole

A mole is a measure of the amount of any substance. It contains the same number of particles, equal to the number of carbon-12 atoms in exactly 12 g of the isotope.

Molar Mass (Mr)

Example 1

What is the molecular formula mass of NaCl ?
\Rightarrow Atomic mass: $\mathrm{Na}=23$ and $\mathrm{Cl}=35.5$
$\Rightarrow \mathrm{Mr}=23+35.5=\underline{\mathbf{5 8 . 5}}$

Example 2

What is the molecular formula mass of AgNO_{3}.
\Rightarrow Atomic mass: $\mathrm{Ag}=107.9, \mathrm{~N}=14$ and $\mathrm{O}=16$
$\Rightarrow \mathrm{Mr}=107.9+14+(16 \times 3)=\underline{169.9}$

What is the link between moles, mass and molar mass of atoms?

$$
\text { Mass }=\mathrm{Mr} \times \text { Moles }
$$

Mr = Mass / Moles

Moles = Mass $/ \mathrm{Mr}$

Example 3

How many moles are in 40 grams of water?

Step 1: Work out the Mr of water $\mathrm{H}_{2} \mathrm{O}$.
\Rightarrow Atomic mass: $\mathrm{H}=1$ and $\mathrm{O}=16$
$\Rightarrow \mathrm{Mr}=1+1+16=18$

Step 2: Calculate the number of moles, using the formula: moles = mass $/ \mathrm{Mr}$
$\Rightarrow 40 / 18=\underline{2.2}$ moles

Example 4:

How many grams are in 3.7 moles of $\mathrm{Na}_{2} \mathrm{O}$?

Step 1: Work out the Mr of $\mathrm{Na}_{2} \mathrm{O}$?
\Rightarrow Atomic mass: $\mathrm{Na}=23$ and $\mathrm{O}=16$
$\Rightarrow \mathrm{Mr}=23+23+16=62$

Step 2: Work out the mass in grams using the formula: mass = Mrx moles
$\Rightarrow 62 \times 3.7=\underline{\mathbf{2 2 9} .4} \mathbf{g}$

Worked Exam Style Questions

Question 1

In the sixteenth century, a large deposit of graphite was discovered in the Lake District.
People at the time thought that the graphite was a form of lead.
Nowadays, graphite is used in pencils but it is still referred to as 'pencil lead'.
A student decided to investigate the number of carbon atoms in a 'pencil lead'. He found that the mass of the 'pencil lead' was 0.321 g .
(i) Calculate the amount, in mol, of carbon atoms in the student's pencil lead.

Assume that the 'pencil lead' is pure graphite.

Step 1: Find the relative atomic mass of carbon.
$\Rightarrow 12$

Step 2: Calculate the number of moles using the formula: moles = mass $/ \mathrm{Mr}$
$\Rightarrow 0.321 / 12=\underline{\mathbf{0 . 0 2 6 7 5}}$

Question 2

Antimony is found naturally in a number of minerals including stibnite. Stibnite typically contains 5% of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$. Antimony can be obtained by reducing $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ with scrap iron.

$$
\mathrm{Sb}_{2} \mathrm{~S}_{3}+3 \mathrm{Fe} \rightarrow 2 \mathrm{Sb}+3 \mathrm{FeS}
$$

(i) How many moles of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ are in 500 kg of a typical sample of stibnite containing 5% by mass of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$?
molar mass of $\mathrm{Sb}_{2} \mathrm{~S}_{3}=340 \mathrm{~g} \mathrm{~mol}^{-1}$; relative atomic mass of $\mathrm{Sb}=122$
(ii) Calculate the mass of antimony that could be obtained by processing 500 kg of stibnite.
\qquad
kg

Step 1: Work out 5% of 500 kg to work out the mass of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ in the sample
$\Rightarrow 5 / 100 \times 500=25 \mathrm{~kg}$
(Remember to convert to grams; therefore 25000 g)

Step 2: Work out the number of moles of $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ by using the formula: moles = mass / Mr
$\Rightarrow 25000 / 340=73.5$ moles

Try these questions...

3. Barium metal can be extracted from barium oxide, BaO , by reduction with aluminium.

$$
6 \mathrm{BaO}+2 \mathrm{Al} \rightarrow 3 \mathrm{Ba}+\mathrm{Ba}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}
$$

Calculate the mass of barium metal that could be produced from reduction of 500 g of barium oxide using this method.
4. Nickel makes up 25% of the total mass of a fifty pence coin. A fifty pence coin has mass of 8.0 g .
(i) Calculate how many moles of nickel atoms are in a fifty pence coin.
answer \qquad mol
5. Aqueous silver nitrate can be used as a test for halide ions. A student decided to carry out this test on a solution of magnesium chloride. The bottle of magnesium chloride that the student used showed the formula $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

The student dissolved a small amount of $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in water and added aqueous silver nitrate to the aqueous solution.
(i) What is the molar mass of $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$?

$$
\text { molar mass }=\ldots \ldots \ldots \ldots \ldots \ldots \mathrm{g} \mathrm{~mol}^{-1}
$$

Empirical Formula

The empirical formula of a substance is the simplest whole number ratio of atoms of each element present.

Example 1:

Analysis showed that 0.6175 g magnesium reacted with 3.995 g of bromine to form a compound. Find the empirical formula of this compound. Atomic masses: $\mathrm{Mg}=24.3$,
$\mathrm{Br}=79.9$

Step 1: Work out the molar ratio of the atoms.
$\Rightarrow \quad \mathrm{Mg} \quad \mathrm{Br}$

Mass: 0.61753 .995

Moles: 0.6175 / $24.3 \quad 3.995$ / 79.9

$$
=0.025 \quad=0.05
$$

Step 2: Divide by the smallest number (in this case 0.025) to find the whole number ratio.
$\Rightarrow \quad \mathrm{Mg}$
Br
0.025 / 0.025
0.05 / 0.025
$=2$

Step 3: Write the empirical formula.
$\Rightarrow \underline{M g B r}_{2}$

Example 2:

Analysis of a compound showed the following percentage composition by mass: $\mathrm{Na}=74.2, \mathrm{O}$ $=25.8$ (Ar: Na = $23, \mathrm{O}=16$)

Step 1: Find the molar ratio of atoms.

```
# Na O
% mass 74.2 25.8
moles 74.2\div23 25.8\div16
    = 3.226 = 1.613
```

Step 2: Divide by the smallest number to find the whole number ratio.
$\Rightarrow \quad \mathrm{Na} \quad \mathrm{O}$

$$
\begin{array}{cc}
3.226 / 1.613 & 1.613 / 1.613 \\
=2 & =1
\end{array}
$$

Step 3: Write the empirical formula.
$\Rightarrow \mathrm{Na}_{2} \mathrm{O}$

Example 3:

A empirical formula of CH_{2} and a relative molecular mass of 70 . What is its molecular formula?

Step 1: Find the empirical formula mass of $\mathrm{CH}_{2} .(\operatorname{Ar}: \mathrm{C}=12, \mathrm{H}=1)$
$\Rightarrow 12+1+1=14$

Step 2: Work out the number of CH_{2} units in a molecule.
$\Rightarrow 70 / 14=5$

Step 3: Work out the molecular formula by multiplying the empirical formula by 5.
$\Rightarrow\left(5 \times \mathrm{CH}_{2}\right)=\underline{\mathrm{C}}_{5} \underline{\mathrm{H}}_{10}$

Worked Exam Style Question

Question 1

Rubidium forms an ionic compound with silver and iodine. This compound has a potential use in miniaturised batteries because of its high electrical conductivity.

The empirical formula of this ionic compound can be calculated from its percentage composition by mass: Rb, 7.42\%; Ag, 37.48\%; I, 55.10\%.

Calculate the empirical formula of the compound.

Step 1: Find the molar ratio of atoms.

\Rightarrow	Rb	Ag	I
\%mass	7.42%	37.48%	55.10%
(\div by Ar)	$7.42 \div 85.5$	$37.48 \div 108$	$55.10 \div 127$
	$=0.0868$	$=0.347$	$=0.434$

Step 2: Divide by the smallest number to find the whole number ratio.
$\Rightarrow \quad \mathrm{Rb}$
Ag
I
0.0868 / 0.0868
$=1$
$0.347 / 0.0868$
0.434 / 0.0868
$=5$

Step 3: Write the empirical formula.
$\Rightarrow \mathbf{R b A g}_{4} \mathbf{I}_{5}$

Try these questions ...

6. Bromine forms three compounds with phosphorus. The compounds have the molecular formulae $\mathrm{PBr}_{3}, \mathrm{PBr}_{5}$ and $\mathrm{P}_{2} \mathrm{Br}_{4}$.
(iii) Compound \mathbf{A} is one of the three bromides of phosphorus above. It has the following percentage composition by mass: $\mathrm{P}, 16.2 \% ; \mathrm{Br}, 83.8 \%$.

Use this percentage composition to calculate the empirical formula and to determine the identity of compound \mathbf{A}.
empirical formula \qquad
identity of compound \mathbf{A} \qquad
7. A compound of iron contains 38.9% by mass of iron and 16.7% by mass of carbon, the remainder being oxygen.
(i) Determine the empirical formula of the iron compound.

Avogadro's Constant

The Avogadro constant , N_{A}, is the number of atoms per mole of the carbon-12 isotope $\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$.

Example 1:

How many atoms are there in 8 moles of sodium?

Step 1: Use the equation: no. of atoms $=$ moles $\times N_{A}$
$\Rightarrow 6.02 \times 10^{23} \times 8=\underline{4.816 \times 10^{24}}$

Example 2:

How many atoms are there in 48 g of water.

Step 1: Calculate the number of moles in 48 g of water.
$\Rightarrow 48 / 18=2.67$

Step 2: Calculate the number of water molecules.
$\Rightarrow 2.67 \times 6.02 \times 10^{23}=1.605 \times 10^{24}$

Step 3: Calculate the number of atoms.
In each water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ there are 3 atoms therefore to work the total number of atoms, multiply the number of water moles by 3 .
$1.605 \times 10^{24} \times 3=\underline{4.815 \times 10^{24}}$

Try this question...
8.

Nickel makes up $\mathbf{2 5 \%}$ of the total mass of a fifty pence coin. A fifty pence coin has mass of 8.0 g .
(i) Calculate how many moles of nickel atoms are in a fifty pence coin.
answer \qquad mol
(ii) Calculate the number of atoms of nickel in a fifty pence coin. $L=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
answer \qquad atoms
9.

Silicon reacts with chlorine to form molecules of silicon tetrachloride, SiCl_{4}.
How many molecules are present in 8.505 g of SiCl_{4} ?

Water of Crystallisation

Water molecules form an essential part of the crystal structure of some compounds, known as water of crystallisation.

Example 1:

A hydrated carbonate of an unknown Group 1 metal has the formula $\mathrm{X}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and is found to have a relative formula mass of 286 . What is the Group 1 metal?

Step 1: Work out the relative formula mass of the compound without the metal.
(Ar: $\mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1$)
$\Rightarrow 12+(16 \times 3)+(20 \times 1)+(16 \times 10)=240$

Step 2: Work out the atomic mass of the two Group 1 metal atoms.
$\Rightarrow 286-240=46$
$46 / 2=23$
The atomic mass of the element is 23

Step 3: Look on the Periodic Table to find the element
$\mathrm{Ar}=23=\mathrm{Na}$, sodium

Example 2 :

11.25 g of hydrated copper sulphate, $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$, is heated until it loses all of its water. Its new mass is found to be 7.19 g . What is the value of x ?

Step 1: Work out the mass of the water lost.

\Rightarrow	CuSO_{4}	$\mathrm{xH}_{2} \mathrm{O}$
mass	7.19	4.06

$(11.25-7.19=4.06)$
Step 2: Calculate the moles of the salt and the water. (Moles = Mass / Mr)
$\Rightarrow \mathrm{Mr}$ of $\mathrm{CuSO}_{4}=159.6 \quad \mathrm{Mr}$ of $\mathrm{H}_{2} \mathrm{O}=18$
Moles of $\mathrm{CuSO}_{4}=7.19 / 159.6 \quad$ Moles of $\mathrm{H}_{2} \mathrm{O}=4.06 / 18$

$$
=0.045
$$

$$
=0.226
$$

Step 3: Divide by the smallest number to find the whole number ratio.
CuSO_{4}
$\mathrm{H}_{2} \mathrm{O}$
$0.045 / 0.045=1$
$0.226 / 0.045=5$
$X=\underline{5}$

Worked Exam Style Question

Question 1

Epsom salts can be used as bath salts to help relieve aches and pains. Epsom salts are crystals of hydrated magnesium sulfate, $\mathrm{MgSO} 4 \cdot \times \mathrm{H} 2 \mathrm{O}$. A sample of Epsom salts was heated to remove the water. 1.57 g of water was removed leaving behind 1.51 g of anhydrous MgSO_{4}.
(i) Calculate the amount, in mol, of anhydrous MgSO_{4} formed.

Mr of $\mathrm{MgSO}_{4}=120.4$
Moles $=1.51$ / 119.4

$$
=\underline{0.0126}
$$

(ii) Calculate the amount, in mol, of $\mathrm{H}_{2} \mathrm{O}$ removed.

Mr of $\mathrm{H}_{2} \mathrm{O}=18$
Moles $=1.57 / 18$

$$
=\underline{0.0872}
$$

(iii) Calculate the value of \boldsymbol{x} in $\mathrm{MgSO}_{4} \cdot \boldsymbol{x H}_{2} \mathrm{O}$.
$0.0872 / 0.0125=\underline{\mathbf{6 . 9 7 6}}$

Try these questions...

10.

A sample of hydrated magnesium sulphate, $\mathrm{MgSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$, is found to contain 51.1% water. What is the value of x ?
11.
13.2 g of a sample of zinc sulphate, $\mathrm{ZnSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$, was strongly heated until no further change in mass was recorded. On heating, all the water of crystallisation evaporated as follows:

$$
\mathrm{ZnSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{xH}_{2} \mathrm{O} .
$$

Calculate the number of moles of water of crystallisation in the zinc sulphate sample given that 7.4 g of solid remained after strong heating.

Moles and Gas Volumes

Molar gas volume is the volume per mole of a gas. The units of molar volume are $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$. At room temperature and pressure, the molar volume is $24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.

Volume $=$ Moles x 24
Moles = volume $/ 24$

If the volume is in cm^{3} then:
Volume $=$ Moles $\times 24000$
Moles = volume $/ 24000$

Example 1:

What is the volume $\left(\mathrm{dm}^{3}\right)$ of 24 moles of CO_{2} gas?
$\Rightarrow 24 \times 24=576 \mathrm{dm}^{3}$

Example 2:

20.0 g of calcium nitrate is heated at until it fully decomposes. The gas collected is cooled to room temperature.

$$
2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{CaO}(\mathrm{~s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) Find the volume of nitrogen dioxide evolved.

Step 1: Calculate the moles of calcium nitrate.
$\Rightarrow 20 / 164.1=0.122$

Step 2: Using stoichiometry work out the number of moles of nitrogen dioxide.
The molar ratio between calcium nitrate and nitrogen dioxide;
$\Rightarrow 2: 4$

Therefore the number of moles of nitrogen dioxide is;
$\Rightarrow 0.122 \times 2=0.244$

Step 3: Calculate the volume of nitrogen dioxide.
\Rightarrow Volume $=24 \times$ Moles
$24 \times 0.244=\underline{\mathbf{5} .85 \mathrm{dm}^{3}}$
b) Find the volume of oxygen evolved.

Step 1: Using stoichiometry work out the number of moles of oxygen.

Calcium nitrate : oxygen

$$
2: 1
$$

$\Rightarrow 0.122 / 2=0.061$

Step 2: Calculate the volume of oxygen.
\Rightarrow Volume $=24 \times$ Moles
$24 \times 0.061=1.464 \mathrm{dm}^{3}$
c) Find the total volume of gas evolved.
$1.464+5.85=\underline{7.314 \mathrm{dm}^{3}}$

Worked Exam Style Question

Question 1

In 2000, the mass of CO_{2} emitted in the UK was equivalent to 1 kg per person in every hour.
(i) Calculate the volume of 1 kg of carbon dioxide. Assume that 1 mole of CO_{2} occupies $24 \mathrm{dm}^{3}$.
volume $=$ \qquad dm^{3}

Step 1: Calculate the number of moles in 1 kg of carbon dioxide.
$\Rightarrow 1 \mathrm{~kg}=1000 \mathrm{~g}$
$1000 / 44=22.7$

Step 2: Calculate the volume of carbon dioxide.
\Rightarrow Volume $=24 \times$ Moles
$22.72 \times 24=\underline{545 \mathrm{dm}^{3}}$

Try these questions...

12.

Europium, atomic number 63 , reacts with oxygen at room temperature.

$$
4 \mathrm{Eu}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Eu}_{2} \mathrm{O}_{3}
$$

Calculate the volume of oxygen, in cm^{3}, required to fully react with 9.12 g of europium at room temperature and pressure.
13.

An aqueous solution of aluminium chloride can be prepared by the redox reaction between aluminium metal and dilute hydrochloric acid.

A student reacts 0.0800 mol of aluminium completely with dilute hydrochloric acid to form an aqueous solution of aluminium chloride.

The equation for this reaction is shown below.

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

(b) Calculate the volume of hydrogen gas formed, in dm^{3}, at room temperature and pressure.

Ideal Gas Equation

The volume (V) occupied by by a certain number of moles of any gas (n) has a pressure (P) at temperature (T) in Kelvin. The link between for these variables is expressed in the following equation:

$$
P V=n R T
$$

R is known as the gas constant.

The variables in the ideal gas equation must be in the correct SI units:
Pressure - measured in Pascals ($1 \mathrm{~atm}=101325 \mathrm{~Pa}$)
Volume - measure in cubic metres ($1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$)
Temperature - measured in Kelvin ($0^{\circ} \mathrm{C}=273 \mathrm{~K}$)
Gas constant - $8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ (This value is given in data booklet)

Example 1:

Find the volume of $4 \mathrm{~g} \mathrm{O}_{2}$ when it is heated to $60^{\circ} \mathrm{C}$ at 1 atm of pressure. Give your answer in dm^{3}, to 2 significant figures.

Step 1: Calculate the number of moles of O_{2} using the equation: moles $=$ mass $/ \mathrm{Mr}$
$\Rightarrow 4 / 32=0.125 \mathrm{~mol}$

Step 2: Rearrange the ideal gas equation to find the volume.
$\Rightarrow \mathrm{V}=\mathrm{nRT} / \mathrm{P}$

Step 3: Put the values (converted to correct units where needed) into the equation.
$\Rightarrow V=\underline{0.125 \times 8.314 \times 333}$ 101325
$=3.42 \times 10^{-3} \mathrm{~m}^{3}$
$=3.42 \mathrm{dm}^{3}$

Example 2:

At $25^{\circ} \mathrm{C}$ and 100 kPa a gas occupies a volume of $20 \mathrm{dm}^{3}$. Calculate the new temperature of the gas if:
a) The volume is decreased to $10 \mathrm{dm}^{3}$ at constant pressure.

Step 1: Calculate the number of moles of this gas. (rearrange the ideal gas equation in order to do this)
$\Rightarrow \mathrm{n}=\mathrm{pV} / \mathrm{RT}$
$=100000 \times 0.02$
8.314×298
$=0.807 \mathrm{~mol}$

Step 2: Rearrange the ideal gas equation to find the temperature and insert values. (converting between units where necessary)

$$
\begin{aligned}
& \Rightarrow T=p V / n R \\
& =\frac{100000 \times 0.01}{0.807 \times 8.314} \\
& =\underline{149 \mathrm{~K}}
\end{aligned}
$$

b) The pressure is decreased to 50 kPa at constant volume.

Step 1: Convert 50 kPa into pascals.
$\Rightarrow 50 \times 1000=50000 \mathrm{~Pa}$

Step 2: Input the values into the rearrange equation.
$\Rightarrow \mathrm{T}=\underline{50000 \times 0.02}$
0.807×8.314
$=149 \mathrm{~K}$

Worked Exam Style Question

Question 1

A sample of ammonia gas occupies a volume of $1.53 \times 10^{-2} \mathrm{~m}^{3}$ at $37^{\circ} \mathrm{C}$ and a pressure of 100 kPa . (The gas constant $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Calculate the amount, in moles, of ammonia in this sample.

Step 1: Rearrange the ideal gas equation to calculate the number of moles.
$\Rightarrow \mathrm{n}=\mathrm{pV} / \mathrm{RT}$

Step 2: Input the values into the equation. (converting values to SI units where necessary)
$\Rightarrow \mathrm{n}=\underline{100000 \times 1.53 \times 10^{-2}}$
8.314×310
$=\underline{0.59 \mathrm{~mol}}$

Try these questions...

14. Norgessaltpeter decomposes on heating as shown by the following equation.

$$
2 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) 2 \mathrm{CaO}(\mathrm{~s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

A sample of Norgessaltpeter was decomposed completely.
The gases produced occupied a volume of $3.50 \times 10^{-3} \mathrm{~m}^{3}$ at a pressure of 100 kPa and a temperature of $31^{\circ} \mathrm{C}$.
(The gas constant $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(i) Calculate the total amount, in moles, of gases produced.
(ii) Hence calculate the amount, in moles, of oxygen produced.

Moles and Solutions

A solute dissolves in a solvent to form a solution, the concentration of this solution is how much solute is dissolved in a given amount of the solvent. The units of concentration moles per dm^{-3}.

You can work out the concentration of a solution by using the equation:

$$
\begin{aligned}
& \text { concentration }=\frac{\text { no. of moles }}{\text { volume }} \\
& \text { volume }=\xrightarrow[\text { concentration }]{\text { no. of moles }}
\end{aligned}
$$

no. of moles $=$ concentration \times volume

Example 1:

What is the amount, in mol, of NaOH dissolved in $20 \mathrm{~cm}^{3}$ of an aqueous solution of concentration 0.0125 moldm $^{-3}$?

Step 1: Work out the number of moles using the equation: moles = concentration x volume
$\Rightarrow 0.0125 \times(20 / 1000)=\underline{2.5 \times 10^{-4}} \underline{\mathrm{~mol}}$

Example 2:

Find the mass of potassium hydroxide required to prepare $200 \mathrm{~cm}^{3}$ of a 0.2 moles per dm^{3} solution.

Step 1: Find the amount of KOH in mol, required in the solution.
$\Rightarrow 0.2 \times 0.2=0.04$

Step 2: Convert moles to grams. (Mass $=$ Mr x Moles)

Mr of $\mathrm{KOH}=39.1+16+1=56.1$
$\Rightarrow 56.1 \times 0.04=\underline{\mathbf{2} .244} \mathbf{g}$

Worked Exam Style Question

Question 1

Chlorine can be prepared by reacting concentrated hydrochloric acid with manganese(IV) oxide.

$$
4 \mathrm{HCl}(\mathrm{aq})+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{MnCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) A student reacted $50.0 \mathrm{~cm}^{3}$ of $12.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid with an excess of manganese(IV) oxide.
(i) Calculate how many moles of HCl were reacted.
answer = \qquad mol
\Rightarrow Use the formula: moles $=$ concentration \times volume
$12 \times 0.05=\mathbf{0 . 6}$ moles

Question 2

$25.0 \mathrm{~cm}^{3}$ of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide was titrated against a solution of hydrochloric acid of unknown concentration. $27.3 \mathrm{~cm}^{3}$ of the acid was required. What was the concentration of the acid?

Step 1: Write a balanced equation of this reaction.
$\Rightarrow \quad \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Step 2: Work out the number of moles of NaOH .
$\Rightarrow 0.025 \times 0.10=2.5 \times 10^{3}$

Step 3: Using molar ratio calculate the concentration of HCl

Molar ratio between $\mathrm{NaOH}: \mathrm{HCl}=1: 1$
\Rightarrow moles of $\mathrm{HCl}=2.5 \times 10^{3}$

Concentration $=$ Mole $/$ Volume
$=2.5 \times 10^{3} / 0.0273=\underline{0.0916 \mathrm{moldm}^{-3}}$

Try these questions...

15.

A student was given $200 \mathrm{~cm}^{3}$ of solution \mathbf{X} in which sodium hydroxide, NaOH , and sodium hydrogencarbonate, NaHCO_{3}, had both been dissolved.

The student carried out two different titrations on samples of solution \mathbf{X} using $0.100 \mathrm{moldm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

- In the first titration, both NaOH and NaHCO_{3} were neutralised.
- In the second titration, only NaOH was neutralised.

The student's results for the titrations of $25.0 \mathrm{~cm}^{3}$ samples of solution \mathbf{X} are shown.

volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to neutralise both NaOH and NaHCO_{3}	$29.50 \mathrm{~cm}^{3}$
volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ needed to neutralise only NaOH	$18.00 \mathrm{~cm}^{3}$

(a) (i) Calculate the amount, in mol, of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used to neutralise only the NaOH in $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{X}.
(ii) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of NaOH in solution \mathbf{X}.
(b) (i) Calculate the amount, in mol , of NaHCO_{3} in the $200 \mathrm{~cm}^{3}$ of solution \mathbf{X}.
(ii) Calculate the mass of NaHCO_{3} in the $200 \mathrm{~cm}^{3}$ of solution \mathbf{X}.

Give your answer to three significant figures.

Percentage Yield

It is assumed when writing fully balanced equations that 100% yield (all reactants converted into products) is achieved however this is not practically achievable most chemical reactions are not 100 \% yield for various reasons.

The formula for percentage yield is:

$$
\% \text { yield }=\frac{\text { Experimental mass } \times 100}{\text { Theoretical mass }}
$$

Example 1:

When 5.00 g of KClO_{3} is heated it decomposes according to the equation:

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

a) Calculate the theoretical yield of oxygen.

Step 1: Calculate the moles of KClO_{3}.

Mr of $\mathrm{KClO}_{3}=122.6$
\Rightarrow moles $=5.00 / 122.6=0.0408$ moles

Step 2: Using the molar ratio work out the theoretical yield of oxygen.

The molar ratio: $\quad \mathrm{KClO}_{3}: \mathrm{O}_{2}$

$$
0.0612: 0408:
$$

\Rightarrow Mass $=\mathrm{Mr} \times$ mole

$$
=0.06 \mathrm{~mol} \times 32
$$

$$
=1.958 \mathrm{~g}
$$

b) Give the \% yield if 1.78 g of O_{2} is produced.

Step 1: Use the percentage yield equation to work out the $\%$ yield of O_{2}.
$\Rightarrow 1.78 / 1.958=\underline{90.9} \%$
c) How much O_{2} would be produced if the percentage yield was 78.5% ?

Step 1: Rearrange the percentage yield equation.
\Rightarrow Actual yield $=(\%$ yield $/ 100) x$ theoretical yield
Step 2: Substitute the values into this rearranged equation.
$\Rightarrow(78.5 / 100) \times 1.958=1.537 \mathbf{g}$

Worked Exam Style Question

Question 1

Magnesium reacts with oxygen as shown in the equation below:

$$
2 \mathrm{Mg}+\mathrm{O} 2 \rightarrow 2 \mathrm{MgO}
$$

Calculate the percentage yield of the reaction, given that burning 2.32 g of magnesium produced 2.39 g of magnesium oxide. [4 marks]

Step 1: Work out the number of moles of magnesium
$\Rightarrow 2.32 / 24.3=0.095$ moles

Step 2: Using molar ratio work out the theoretical yield of magnesium oxide
\Rightarrow Molar ratio Mg : MgO

Therefore theoretically there should be 0.095 mol MgO .

Step 3: Calculate the mass of magnesium oxide produced.

Mass $=$ moles $\times \mathrm{Mr}$
$\Rightarrow 0.095 \times 40.3=3.83$

Step 4: Use the \% yield equation to work out the \% yield for this reaction.
\Rightarrow \% yield $=$ Actual yield $/$ theoretical yield $\times 100$

$2.39 / 3.83 \times 100=\underline{\mathbf{6 2 . 4} \%}$

Try these questions ...

16.

Alkenes can be prepared by the dehydration of alcohols with an acid catalyst.
Cyclohexene can be prepared by the dehydration of cyclohexanol, shown below.

A student reacted 7.65 g of cyclohexanol, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$, and obtained 0.0268 mol of cyclohexene.
(ii) Calculate the percentage yield of cyclohexene.
answer = \qquad \%
17.

Bromobutane, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, can be reacted with hot aqueous sodium hydroxide to prepare butan-1-ol.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Br}^{-}
$$

A student reacted 8.72 g of bromobutane with an excess of OH^{-}. The student produced 4.28 g of butan-1-ol.
(i) Calculate the amount, in mol, of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ reacted.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{Mr}=136.9
$$

(ii) Calculate the amount, in mol, of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ produced.
[2 mark]
(iii) Calculate the percentage yield.

Quote your answer to three significant figures.

Atom Economy

A chemical reaction can produce a by-product which is also considered as waster as well as the desired product. Atom economy reflects the efficiency of a reaction producing the desired product.

Atom Economy:

$$
\% \text { atom economy }=\frac{\mathrm{Mr} \text { of desired product } \times 100}{\mathrm{Mr} \text { of reactants }}
$$

Example 1:

Milk of magnesia is an antacid that helps to relieve indigestion.
Milk of magnesia contains magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$.
A pharmaceutical company makes magnesium hydroxide using the following reaction

$$
\mathrm{MgCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NaCl}
$$

The sodium chloride, NaCl , made is a waste product.
Look at the table of relative formula masses.

Substance	Relative formula mass, $\boldsymbol{M}_{\mathbf{r}}$
${\mathrm{MgC} l_{2}}^{\mathrm{NaOH}}$	95
$\mathrm{Mg}(\mathrm{OH})_{2}$	40
NaCl	58

(a) Calculate the atom economy for the manufacture of magnesium hydroxide.

Step 1: Use the equation to work out the atom economy
\Rightarrow Desired product $=\mathrm{Mg}\left(\mathrm{OH}_{2}\right), \mathrm{Mr}=58$
\Rightarrow By-product $=\mathrm{NaCl}, \mathrm{Mr}=58.5$
$58 / 116.5=\underline{49.8 \%}$

Example 2:

What is the percentage atom economy in forming ethene by this reaction?

$$
\mathrm{C} 12 \mathrm{H} 26 \quad \rightarrow \quad \mathrm{C} 10 \mathrm{H} 22 \quad+\quad \mathrm{C} 2 \mathrm{H} 4
$$

Step 1: Work out the molecular mass of ethene.
\Rightarrow Ar: $\mathrm{C}=12, \mathrm{H}=1$
$(12 \times 2)+4=28$

Step 2: Work out the molecular mass of decane.
$\Rightarrow(12 \times 10)+22=142$
Step 3: Calculate the atom economy.
$\Rightarrow 28 / 170 \times 100=16.5 \%$

Worked Exam Style Questions

Question 1

Look at the equations. They show how aspirin can be made.

$$
\begin{array}{ll}
\text { salicylic acid }+ \text { ethanoyl chloride } & \rightarrow \text { aspirin }+ \text { hydrogen chloride } \\
\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCl} & \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{HCl}
\end{array}
$$

Look at the table. It shows some information about the compounds involved in making aspirin.

Compound	Formula	Relative formula mass
salicylic acid	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}$	138
ethanoyl chloride	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OC} l$	78.5
aspirin	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	180
hydrogen chloride	HCl	36.5

Calculate the atom economy

Step 1: Work out the molecular mass of hydrogen chloride using the periodic table.
$\Rightarrow(\mathrm{Ar}: \mathrm{H}-1, \mathrm{Cl}-35.5)$
$1+35.5=36.5$
Step 2: Use the atom economy equation to work out the atom economy.
$\Rightarrow \quad 180 / 216.5=\underline{83.1 \%}$

Try these questions...

18.

Stowmarket Synthetics manufacture ethanoic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$, by two different processes.
Process $1 \quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
Process $2 \quad \mathrm{CH}_{4} \mathrm{O}+\mathrm{CO} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
Look at the table of relative formula masses.

Compound	Formula	Relative formula mass, $\boldsymbol{M}_{\mathbf{r}}$
ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	46
oxygen	O_{2}	32
ethanoic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	60
water	$\mathrm{H}_{2} \mathrm{O}$	18
methanol	$\mathrm{CH}_{4} \mathrm{O}$	32
carbon monoxide	CO	28

Stowmarket Synthetics know that the atom economy of a process is important.
Water is a waste product in process 1.
Show that the atom economy for making ethanoic acid by process 1 is 77%.
19.

Hydrogen peroxide has the molecular formula $\mathrm{H}_{2} \mathrm{O}_{2}$.
Hydrogen peroxide can be manufactured by reacting barium peroxide, BaO_{2}, with sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}
$$

Barium sulfate, BaSO_{4}, is a waste product.
Look at the table of relative formula masses, M_{r}

formula	relative formula mass, $\boldsymbol{M}_{\mathbf{r}}$
BaO_{2}	169
$\mathrm{H}_{2} \mathrm{SO}_{4}$	98
BaSO_{4}	233
$\mathrm{H}_{2} \mathrm{O}_{2}$	34

(a) Show that the atom economy for the reaction is 12.7%.

Answers

Q1.
(ii) $\frac{24 \times 78.60+25 \times 10.11+26 \times 11.29}{100}$

OR $18.8640+2.5275+2.9354$
OR $24.3269 \checkmark$
$\mathrm{A}_{\mathrm{r}}=24.33$ (to 4 sig figs) \checkmark
ALLOW two marks for $A_{r}=24.33$ with no working out
ALLOW one mark for ecf from incorrect sum provided final
answer is between 24 and 26 and is to 4 significant figures, e.g.
$24.3235 \times$ gives ecf of $24.32 \checkmark$

Q2.

$\underline{(124 \times 2)+(126 \times 4)+(128 \times 7)+(130 \times 6)} 19$	or $\frac{2428}{19}$	1
$\underline{127.8}$		M1 for top line
Or	1	M2 for correct denominator
	Or	
$\underline{(124 \times 10.5)+(126 \times 21.1)+(128 \times 36.8)+(130 \times 31.6)}$		
100	1	1
$\underline{127.8}$	1	Mark no working shown scores 3 marks 100 dependent on top line correct

Q3.

```
M(BaO) = 137+16=153 \checkmark
moles }\textrm{BaO}=500/153\mathrm{ or 3.268 mol }
moles }\textrm{Ba}=3.268/2\mathrm{ or 1.634 
mass Ba formed =1.634\times137=224g g
accept 223.856209/223.86/223.9 g.
if 6 mol BaO forms 3 mol Ba, award 3rd mark
Alternative method
mass 6BaO=918 g v
mass 3Ba=411g
1g BaO forms 411/918 g Ba }
500 g BaO forms 223.856209/223.86/223.9 g Ba }
```

Q4.
mass of $\mathrm{Ni}=2.0 \mathrm{~g}$
moles of $\mathrm{Ni}=2.0 / 58.7 \mathrm{~mol}=0.0341 / 0.034 \mathrm{~mol} \checkmark$
(1 mark would typically result from no use of $25 \% \rightarrow 0.136 \mathrm{~mol}$)
2
2nd mark is for the mass of Ni divided by 58.7
Q5.
(i) $203.3 \mathrm{~g} \mathrm{~mol}^{-1} \checkmark$
Accept 203 $\quad 1$

Q6.
ratio $\mathrm{P}: \mathrm{Br}=16.2 / 31: 83.8 / 79.9$
$/=0.52: 1.05$
/=1:2
Empirical formula $=\mathrm{PBr}_{2} \checkmark$
Correct compound $=\mathrm{P}_{2} \mathrm{Br}_{4}$ /phosphorus(II) bromide but not PBr_{2}

Q7.
$\% \mathrm{O}=44.4$ (1)
(if incorrect \%O, AE-1)
(if $\% \mathrm{O}$ omitted can score $\max 1$ for FeC_{2})
ratio Fe:C:O $=\frac{38.9}{55.8}:$ (or 50) $\frac{16.7}{12.0}: \frac{44.4}{16.0}$ (if use At, CE)
$=1: 2: 4$
$\mathrm{FeC}_{2} \mathrm{O}_{4}$ (1)

Q8.
(i) mass of $\mathrm{Ni}=2.0 \mathrm{~g} \checkmark$
moles of $\mathrm{Ni}=2.0 / 58.7 \mathrm{~mol}=0.0341 / 0.034 \mathrm{~mol} \checkmark$
(1 mark would typically result from no use of $25 \% \rightarrow 0.136 \mathrm{~mol}$) 2
2nd mark is for the mass of Ni divided by 58.7
(ii) number of atoms of $\mathrm{Ni}=6.02 \times 10^{23} \times 0.0341$
$=2.05 \times 10^{22} / 2.1 \times 10^{22}$ atoms
Can be rounded down to 2.1 or 2.0 or 2 (if 2.0)
From 8 g , ans $=8.18 / 8.2 \times 10^{22}$
(and other consequential responses)

Q9.

Answer	Marks	Guidance
First check the answer on the answer line. If answer $=3.01 \times 10^{22}$ award 3 marks $170.1 \checkmark$ (ALLOW in working shown as $28.1+35.5 \times 4$) Correctly calculates amount of molecules $8.505 / 170.1=0.05(00) \mathrm{mol}$ Correctly calculates number of molecules $0.05 \times 6.02 \times 10^{23}=3.01 \times 10^{22}$	3	ALLOW 0.301×10^{23} for three marks If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW ECF from incorrect molar mass of SiCl_{4} ALLOW 0.05(00) (mol) for two marks ALLOW ECF for incorrect number of mol of SiCl_{4} ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 . DO NOT ALLOW any marks for: $8.505 \times 6.02 \times 10^{23}=5.12 \times 10^{24}$

Q10. $100-51.1=48.9$
$24+32+64=120$
$48.9 / 120=0.4075$
Moles of MgSO4-51.1 / $18=2.8389$
Moles of $\mathrm{H} 2 \mathrm{O}-2.8389 / 0.4075=6.967=7$ moles of $\mathrm{H}_{2} \mathrm{O}$.

$$
x=7
$$

Q11. $\mathrm{ZnSO}_{4}=65+32+64=161$
$\mathrm{H}_{2} \mathrm{O}=2+16=18$
$7.4 \mathrm{~g} / 161=0.045963$ Moles of ZnSO_{4}
$13.2 \mathrm{~g}-7.4 \mathrm{~g}=5.8 \mathrm{~g}$
$5.8 \mathrm{~g} / 18=0.3222$ Moles of $\mathrm{H}_{2} \mathrm{O}$
$0.3222 / 0.045963=7$ times more $\mathrm{H}_{2} \mathrm{O}$.

$$
x=7
$$

Q12.

Answer	Mark	Guidance
Check the answer line. If answer $=1080 \mathbf{c m}^{3}$ award 2 marks	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' eg 0.200 is allowed as 0.2
Amount of $\mathrm{Eu}=9.12 / 152.0=0.06(00) \mathrm{mol} \checkmark$		ALLOW incorrectly calculated amount of Eu $\times 3 / 4$ and \times 24000 correctly calculated for $2^{\text {nd }}$ mark Eg 2605.7 would come from $(9.12 / 63) \times 3 / 4 \times 24000$ (note: a mass of Eu $\times 3 / 4$ and $\times 24000$ would not score M2)
Amount of $\mathrm{O}_{2}=0.0600 \times 3 / 4=0.045(0) \mathrm{mol}$ and Volume of $\mathrm{O}_{2}=0.0450 \times 24000=1080 \mathrm{~cm}^{3} \checkmark$		

Q13.

FIRST CHECK THE ANSWER ON THE ANSWER LINE	$\mathbf{2}$	
IF answer $=2.88 \mathrm{dm}^{3}$ award 2 marks		
		ALLOW ECF from incorrectly calculated moles of H_{2}
Mol of $\mathrm{H}_{2}=0.12 \checkmark$		$0.08 \times 24=1.92$ gets 1 mark

Q14.

$$
T=304(\mathrm{~K}) \text { and } P=100000(\mathrm{~Pa})
$$

Only T and P correctly converted

$$
\frac{100000 \times 3.50 \times 10^{-3}}{8.31 \times 304} \mathrm{OR} n=\frac{\mathrm{PV}}{R T}
$$

0.139 (mol)

Allow $0.138-0.139$

1

1

1

Q15.

(a)	(i)	Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.100 \times 18.00 / 1000=1.80 \times 10^{-3} \mathrm{~mol} \checkmark$	1	ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' throughout Q4. eg 0.200 is allowed as 0.2
	(ii)	$\text { Mol of } \mathrm{NaOH} \text { in }=1.80 \times 10^{-3} \times 2 \times 1000 / 25.0=0.144 \mathrm{~mol}$ dm^{-3}	1	ALLOW ECF for (a)(i) $\times 2 \times 1000 / 25$
(b)	(i)	Check the answer line. If answer $=0.0184 \mathrm{~mol}$ award 2 marks Mol of NaHCO_{3} in $25.0 \mathrm{~cm}^{3}=[0.100 \times 11.50 / 1000] \times 2=$ 0.00230 mol Mol of NaHCO_{3} in $200 \mathrm{~cm}^{3}=0.00230 \times 200 / 25.0=0.0184$ mol	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW for an alternative method for M1 Total mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=[0.100 \times 29.50 / 1000]=0.00295$ mol Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacting with $\mathrm{NaHCO}_{3}=0.00295$ - answer to (a)(i) Expected answer $=.00295-0.00180=0.00115 \mathrm{~mol}$ Mol of NaHCO_{3} in $25.0 \mathrm{~cm}^{3}=0.00115 \times 2=0.00230 \mathrm{~mol}$ ALLOW ECF for mol of $\mathrm{NaHCO}_{3} \times 200 / 25.0$ For ECF in M2 titration values of 11.50 or 29.50 must have been used in M1 Second marking point is for scaling up number of mol of NaHCO_{3} by 200/25.0 (Usually seen as ' 8 ')
	(ii)	Mass of $\mathrm{NaHCO}_{3}=0.0184 \times 84.0=1.55 \mathrm{~g} \checkmark$ (must be three significant figures)	1	ALLOW ECF for (b)(i) $\times 84.0$ correctly calculated and rounded to three significant figures.

Q16.

$$
\begin{aligned}
& M_{\mathrm{r}}(\text { cyclohexanol })=100 \checkmark \\
& \text { amount of cyclohexanol }=0.0765 \mathrm{~mol} \\
& \text { percentage yield }=35.0 \% \checkmark
\end{aligned}
$$

ALLOW full marks for correct answer with no or limited working out

ALLOW ecf from wrong molar mass i.e. $7.65 \div$ molar mass
ALLOW ecf from wrong amount in moles i.e. [0.0268 \div
moles] $\times 100$
ALLOW 35\%
ALLOW two marks for 0.35%
If M_{r} of 82 is used then $\%$ yield will be 28.7 or 29 and this is worth two marks

Q17.

(i) $8.72 / 136.9=0.0637 \mathrm{~mol}$ (1)
(ii) M_{r} butan-1-ol $=74(.0)$ (1)
moles $=4.28 / 74.0=0.0578 \mathrm{~mol}(\mathbf{1}) \quad 2$
(iii) $0.0578 / 0.0637 \times 100=90.7 \%$ (1)

1

Q18.

Q19.

Answer	Marks	
$\frac{34}{267} \times 100(1)$	1	Gllow $\frac{34}{(233+34)} \times 1001 \frac{34}{(98+169)} \times 100$
		the mark is for the working out and not the answer

